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ABSTRACT

Weuse theNorthernHemisphereTree-RingNetworkDevelopment (NTREND) tree-ring database

to examine the effects of using a small, highly-sensitive proxy network for paleotemperature data

assimilation over the last millennium. We first evaluate our methods using pseudo-proxy experi-

ments. These indicate that spatial assimilations using this network are skillful in the extratropical

Northern Hemisphere and improve on previous NTREND reconstructions based on Point-by-Point

regression. We also find our method is sensitive to climate model biases when the number of

sites becomes small. Based on these experiments, we then assimilate the real NTREND network.

To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a

different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the

network becomes sparse, but show greater consistency as the network grows. Temporal variabil-

ity is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty

estimates and these identify treeline North America and eastern Siberia as regions that would

most benefit from development of new millennial-length temperature-sensitive tree-ring records.

We compare our multi-model mean reconstruction to five existing paleo-temperature products to

examine the range of reconstructed responses to radiative forcing. We find substantial differences

in the spatial patterns and magnitudes of reconstructed responses to volcanic eruptions and in

the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for

the development of a paleoclimate reconstruction intercomparison framework for systematically

examining the consequences of proxy network composition and reconstruction methodology and

for continued expansion of tree-ring proxy networks.
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1. Introduction38

Past variations in surface temperatures can be used to investigate a number of key characteristics39

of the Earth’s climate system, including the response to radiative forcing, the regional effects of40

such forcings, and the role of internal modes of coupled ocean-atmosphere variability (Hegerl et al.41

1997; Stott and Tett 1998; Delworth and Mann 2000; Meehl et al. 2004; Lean and Rind 2008; Stott42

and Jones 2009; Stott et al. 2010; Solomon et al. 2011; Phipps et al. 2013; Hegerl and Stott 2014;43

Kaufman 2014; Guillet et al. 2017; Neukom et al. 2019; Zhu et al. 2020). Paleoclimate temperature44

reconstructions using natural archives like tree-rings are particularly useful because they extend45

the short instrumental record to centennial and longer timescales. These provide an opportunity46

to characterize the patterns and magnitude of forced climate response and internal variability47

(Hegerl et al. 2003, 2007; Schurer et al. 2013; Masson-Delmotte et al. 2013). Climate field48

reconstructions (CFRs) can additionally capture the spatial fingerprints of large-scale temperature49

anomalies caused by radiative forcing and ocean-atmosphere dynamics (Mann et al. 1998; Evans50

et al. 2001; Seager et al. 2007; Cook et al. 2010a,b; Phipps et al. 2013; Anchukaitis and McKay51

2015; Goosse 2017). CFRs have been developed using a number of methods (Tingley et al.52

2012; Smerdon and Pollack 2016) including point-by-point methods (Cook et al. 1999, 2010a,b;53

Anchukaitis et al. 2017), variants of regularized expectation maximization (RegEM; Schneider54

2001; Rutherford et al. 2003; Mann et al. 2009; Smerdon et al. 2011; Guillot et al. 2015), and55

reduced space approaches (Fritts 1991; Cook et al. 1994; Mann et al. 1998; Evans et al. 2002; Gill56

et al. 2016).57

Recently, data assimilation (DA) has emerged as a promising CFR technique (e.g. Widmann58

et al. 2010; Bhend et al. 2012; Goosse et al. 2012; Steiger et al. 2014; Hakim et al. 2016; Matsikaris59

et al. 2015; Okazaki and Yoshimura 2017; Steiger et al. 2018; Franke et al. 2020). Assimilation60
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methods integrate the climate signals recorded in paleoclimate proxies with dynamical constraints61

provided by climate models to produce spatially continuous climate field reconstructions and62

associated uncertainty estimates. There are several existing paleoclimate DA paradigms, including63

pattern nudging / forcing singular vectors (Van der Schrier and Barkmeijer 2005), particle filters64

(Goosse et al. 2012; Dubinkina and Goosse 2013; Matsikaris et al. 2015), and ensemble Kalman65

filters (Bhend et al. 2012; Steiger et al. 2014; Hakim et al. 2016; Dee et al. 2016; Perkins and66

Hakim 2017; Steiger et al. 2018; Tardif et al. 2019; Franke et al. 2020). Here, we focus on the67

ensemble Kalman filter (EnKF) approach (Steiger et al. 2014; Hakim et al. 2016), which has been68

shown to perform well compared to other DA methods in a paleoclimate context (Liu et al. 2017).69

EnKF methods update an ensemble of climate states to more closely match paleoclimate proxy70

records. These climate states are produced using one of two approaches: the “online” method, in71

which the ensemble is generated by a set of transient model simulations that propagate updates72

forward through time (e.g. Perkins and Hakim 2017); and the “offline” (or “no-cycling”) method73

(Oke et al. 2002; Evensen 2003), in which ensembles are constructed from pre-existing climate74

model output (e.g. Bhend et al. 2012; Annan and Hargreaves 2012; Steiger et al. 2014; Hakim75

et al. 2016; Valler et al. 2019; Tardif et al. 2019; Franke et al. 2020). We focus here on the offline76

approach, which has been shown to perform favorably to online methods in paleoclimate contexts77

with reduced computational costs (Matsikaris et al. 2015; Acevedo et al. 2017). A key requirement78

of EnKFmethods is the ability to estimate equivalent proxy values from climate model output. This79

is achieved through the use of forward models that translate climate state variables, like surface80

temperature, into proxy values, like tree-ring width (TRW) or maximum latewood density (MXD).81

These forward models can range in complexity from a simple linear relationship to more detailed82

Proxy Systems Models (PSMs) incorporating the physical processes that transform climate signals83
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to proxy records (Evans et al. 2013). The use of forward models helps separate data and process84

level models in the data assimilation framework (Goosse 2016).85

An important decision in any assimilation is the selection of the proxy network. Ultimately,86

this choice must balance spatiotemporal coverage with sensitivity to the reconstructed field and87

associated proxy uncertainties (Esper et al. 2005; Frank et al. 2010; Wang et al. 2015; Wilson88

et al. 2016; Anchukaitis et al. 2017; Esper et al. 2018; Franke et al. 2020; Cort et al. 2021).89

In general, large networks maximize coverage, but their size often results from the inclusion of90

proxy records with comparatively weak, complex, seasonally varying, or multivariate sensitivity to91

reconstructed variables. By contrast, smaller curated networks consisting of well-understood and92

strongly-sensitive proxies provide a higher ratio of signal to noise at the cost of reduced coverage93

(Frank et al. 2010). An additional consideration concerns the implementation of forward models:94

highly sensitive networks with a known climate response and seasonal window facilitate physically95

realistic forward models, potentially improving assimilation skill. Given the complexity of these96

trade-offs, network selection is not necessarily intuitive. Noisy proxies that covary poorly with97

climate fields are down-weighted by the Kalman filter algorithm; if this down-weighting renders98

the effects of climate-insensitive proxies negligible on a reconstruction, then a large network99

incorporating many proxies might appear preferable. However, work by Franke et al. (2020)100

indicates that EnKF temperature reconstructions using large proxy networks do not correlate with101

target temperatures as well as reconstructions produced using smaller, more sensitive networks.102

This result is supported by Tardif et al. (2019), who found that additional screening of proxy records103

for temperature sensitivity in an assimilation framework improved their ability to reconstruct salient104

pre-industrial climate features, such as cooling during the Little Ice Age. The importance of proxy105

sensitivity is further highlighted by Steiger and Smerdon (2017) who note that skillful hydroclimate106

DA requires proxies sensitive to the target reconstruction field.107
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Curated temperature sensitive proxy networks for data assimilation include the PAGES2k108

(PAGES2k Consortium 2013, 2017) and NTREND networks (Wilson et al. 2016; Anchukaitis109

et al. 2017). The PAGES2k network has been commonly used in paleo-DA applications (Hakim110

et al. 2016; Dee et al. 2016; Okazaki and Yoshimura 2017; Perkins and Hakim 2017; Tardif et al.111

2019; Neukom et al. 2019) and consists of proxy records identified as temperature-sensitive and112

meeting minimum temporal coverage and age model precision criteria during the Common Era113

(PAGES2k Consortium 2017). DA reconstructions using this network may implement additional114

proxy screening but usually incorporate several hundred proxy records. The NTREND network115

has stricter requirements for inclusion: it consists of 54 published tree-ring chronologies selected116

by dendroclimatologists for demonstrating an established and reasonable biophysical association117

with local seasonal temperatures (Wilson et al. 2016). Franke et al. (2020) proposed that the ad-118

ditional coverage of the PAGES2k network is preferable to the increased sensitivity of the smaller119

NTREND network for global and hemisphere-scale temperature reconstructions but found the120

NTREND network provided the best reconstruction in the extratropical Northern Hemisphere. To121

produce a maximally skillful reconstruction for this region, we focus on assimilating the NTREND122

network but acknowledge that this choice is accompanied by a reduced spatial extent.123

Before performing an assimilation, we seek to understand the advantages and tradeoffs of offline124

EnKF related to both the proxy data and climate model priors. We implement these sensitivity125

tests using pseudo-proxy experiments (Mann and Rutherford 2002; Zorita et al. 2003; Smerdon126

2012), which allow us to test the DA method’s ability to reconstruct known climate fields within127

a controlled setting. Here, we note the importance of model selection in DA pseudo-proxy128

experiments and distinguish between “perfect-model” and “biased-model” experimental designs.129

In a perfect-model experiment, the same model is used to generate the target field and as the model130

prior. Such designs are common in DA analyses (Annan and Hargreaves 2012; Steiger et al. 2014;131
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Okazaki and Yoshimura 2017; Acevedo et al. 2017; Zhu et al. 2020), where they are powerful tools132

for testing sensitivity to variables like proxy noise, network distribution, and calibration intervals.133

Biased-model paradigms use different climate models to generate target fields and assimilated134

model priors and can help examine the effects of biases in a model prior’s mean state and spatial135

covariance. Dee et al. (2016) found model biases a potentially major source of error in paleo-EnKF136

reconstructions, so we employ both perfect and biased-model experiments in our investigations.137

In this study, we begin by first evaluating the sensitivity of our DA method to proxy noise,138

network attrition, and climate model biases in a suite of pseudo-proxy experiments. We also use139

the pseudo-proxy framework to compare the skill of our DA method to point-by-point regression140

(PPR), the technique used for the original NTREND temperature field reconstruction (Anchukaitis141

et al. 2017). We then assimilate the real NTREND tree-ring network to reconstruct mean May142

through August (MMJA) temperature anomalies. We produce an ensemble of real reconstructions143

by assimilating NTREND with output from multiple climate models in the Coupled Modeling144

Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012) and the Community Earth System145

Model (CESM) Last Millennium Ensemble (LME; Otto-Bliesner et al. 2016). We quantify the skill146

of the DA reconstructions using spatial temperature anomaly fields, mean Northern Hemisphere147

extratropical (30°N–90°N) May through August time series, and withheld proxy data. Finally,148

we examine the climate response of the ensemble-mean reconstruction to radiative forcings and149

compare these responses against existing temperature field reconstructions.150
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2. Methods151

a. Proxy Network152

TheNTREND network is a curated set of 54 published annual resolution tree-ring based summer-153

temperature proxy records selected by dendroclimatologists to maximize sensitivity to boreal154

summer temperatures while minimizing the response to other climate variables (Figure 1; Wilson155

et al. 2016; Anchukaitis et al. 2017). Although tree growth at theNTREND sites is primarily limited156

by summer growing temperatures, the optimal summer season varies between sites. Wilson et al.157

(2016) determined the season of highest temperature sensitivity for each site and identified mean158

MJJA temperatures anomalies as the optimal reconstruction target for the network as a whole.159

The network only includes sites between 40°N and 75°N as lower latitude trees tend to exhibit160

sensitivity to multiple climate influences, especially moisture limitations. Each record is derived161

from ring-width measurements (TRW), maximum latewood density (MXD; Schweingruber et al.162

1978), or a mixture of TRW, MXD, and blue intensity (BI; McCarroll et al. 2002; Björklund et al.163

2014; Rydval et al. 2014; Wilson et al. 2019). The network extends from 750 - 2011 CE, with164

maximum coverage over the period from 1710-1988 CE. Spatial coverage is greater over Eurasia165

(39 sites) than North America (15 sites), with a distinct spatial imbalance prior to 1000 CE (20166

vs. 3). We end all reconstructions in 1988 CE as network attrition limits the utility of assimilated167

NTREND reconstructions after this point (Anchukaitis et al. 2017).168

b. Data Assimilation169

Our data assimilation method uses an ensemble Kalman filter (EnKF) (Evensen 1994; Steiger170

et al. 2014)171
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Xa = Xp +K(Y−Ye) (1)

to update an initial ensemble of climate states (Xp) given proxy data (Y) and model estimates172

of the proxy data (Ye). These data are combined via the Kalman Gain (K; detailed in Appendix173

A1) to produce an updated ensemble (Xa) in each reconstructed annual time step. We use an174

EnKF variant known as the ensemble square root Kalman filter (EnSRF; Andrews 1968), with an175

“offline” (or “no-cycling”) approach (Oke et al. 2002; Evensen 2003). The complete details of our176

approach are given in Appendix A1 and described in Steiger et al. (2014) and Hakim et al. (2016).177

The Kalman Filter can be expressed as a recursive Bayesian filter (Chen et al. 2003; Wikle and178

Berliner 2007), wherein new information (Y) updates estimates of state parameters (X). Hence, we179

will often refer to Xp as the model prior, and the updated ensemble Xa as the model posterior.180

We implement a covariance localization scheme, which limits the influence of proxies outside181

of a specified radius. Localization was originally developed to limit spurious covariance arising182

from sampling noise in small ensembles of m ≤ 50 (Houtekamer and Mitchell 2001). Our of-183

fline approach enables the use of much larger ensembles (m > 1000), but we note that spurious184

covariances may still arise from biases in a climate model’s covariance structure. Consequently,185

localization may improve the quality of assimilated paleoclimate reconstructions even for large186

prior ensembles. The localization radius is an important free parameter in this method and must187

be assessed independently for different model priors, reconstruction targets, and proxy networks188

(Tables 2, S1). The process used to select localization radii for these experiments is detailed in189

Appendix A2.190

To generate model estimates of the proxy values, we follow the methodology of Tardif et al.191

(2019) and use linear univariate forward models trained on the mean temperature of each site’s192
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optimal growing season (Wilson et al. 2016), such that:193

ye 9
= U 9 + V 9T 9 . (2)

Here, T 9 is a vector of mean growing-season temperature anomalies extracted from the prior. The194

coefficients U 9 and V 9 are determined by regressing assimilated observations (ŷ 9 ) against mean195

growing-season temperature anomalies from the closest grid cell of the target field. We emphasize196

that these target fields vary by application. For pseudo-proxy experiments, the target field is a197

specific model realization, whereas the real assimilation uses CRU-TS 4.01 (Harris et al. 2014).198

Regardless of the target, we perform each regression over the years in which the real NTREND199

records overlap data from the closest land grid cell in CRU-TS 4.01; this ensures that both pseudo-200

proxy and real reconstructions use regressions with the same temporal span. The variance of201

each record’s regression residuals is used as the observation uncertainty (Rjj) in the Kalman Filter202

(Appendix A1). This uncertainty ranges from 0.23 to 1.34 proxy units over the network.203

We construct prior ensembles using output from the past1000 and historical experiments of the204

CoupledModeling Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012) as well as the Last205

Millennium Ensemble (LME; Otto-Bliesner et al. 2016). For a given assimilation, we use values206

from a single climate model and designate each year of available output as a unique ensemble207

member. We use static model priors, whereby the same prior is used for each reconstructed time208

step. This scheme is justified by the limited forecast skill of climate models beyond the annual209

reconstruction timescale (Bhend et al. 2012) and is common in paleo-DA applications (e.g. Steiger210

et al. 2014; Dee et al. 2016; Tardif et al. 2019). A summary of themodel ensembles is given in Table211

1. The past1000 CMIP5 data for each model are from the ensemble member designated r1i1p1, and212

LME output was selected from full-forcing run 2. We assimilate temperature anomalies relative to213

the 1951-1980 CE mean; this helps avoid the effects of climate model mean state biases, but we214
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note that model covariance biases are unaffected. In all reconstructions, we update the mean May215

through August (MJJA) temperature anomaly field, rather than individual months. We assess the216

skill of each assimilation by comparing the Pearson’s correlation coefficients, root mean square217

errors (RMSEs), mean biases, and standard deviation ratios.218

c. Pseudo-proxy Reconstructions219

Before assimilating the real NTREND network, we first examine the skill of our DA method in a220

pseudo-proxy framework (Smerdon 2012). This approach allows us to test the method’s ability to221

reconstruct known climate field targets within a controlled setting. Here, we specify the target fields222

as surface temperatures from the years 850-2005 CE from either the Last Millennium Ensemble223

full-forcing run 2 (CESM; Otto-Bliesner et al. 2016), or from the combined last millennium224

and historical runs of the Max Planck Institute for Meteorology Earth System Model (MPI;225

Marsland et al. 2003; Stevens et al. 2013). While this experimental design is intentionally tractable,226

we caution that the observed spatial patterns of skill will depend on the specific models used227

(Smerdon et al. 2011). Here, we are interested in examining the sensitivity of EnSRF to the proxy228

network and climate model prior, so we systematically explore the effects of noisy proxy records,229

network attrition, and biased climate models on DA performance. To examine the effects of model230

covariance biases, we test each combination of target field and model prior for LME and MPI,231

which allows us to alternate between perfect-model and biased-model experimental designs.232

After selecting a target field, we generate pseudo-proxies using:233

ŷ 9 = 0 9 + 1 9Ttarget
9
+ n 9 (3)

where ŷ 9 is the 9 th pseudo-proxy record andTtarget
9

is the vector ofmean growing season temperature234

anomalies from the grid cell closest to the proxy site in the target climate field. The coefficients 0 9235
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and 1 9 are the intercept and slope obtained by regressing the real NTREND network against mean236

growing-season temperature anomalies from the nearest land cells in CRU-TS 4.01; in this way,237

the pseudo-proxies mimic the temperature response of the real NTREND network for at least the238

instrumental period.239

We examine the effects of proxy noise by selectively neglecting or adding Gaussian white noise240

to the pseudo-proxies, such that:241

n 9 ∼


0, Perfect

N(0,Rjj), Noisy
(4)

Here, Rjj is the proxy-uncertainty weight for the 9 th NTREND record and is the variance of the242

NTREND-CRU regression residuals. When testing noisy proxies, we perform 101 assimilations243

using different noisematrices and report themedian skill metrics. Here, we use white noise because244

it allows us to directly tune the Rjj weight in the Kalman Filter. The median signal-to-noise ratio245

is 0.80 for the CESM pseudo-proxies and 0.85 for the MPI pseudo-proxies, which is consistent246

with values found in other pseudo-proxy experiments (Smerdon 2012). In each test, we examine247

the effects of network attrition by first assimilating the full set of pseudo-proxies over the entire248

period and then comparing this to an assimilation where the pseudo-proxies are subjected to the249

same temporal attrition as the real NTREND network.250

After generating pseudo-proxies for a given experiment, we generate pseudo-proxy estimates251

by applying equation 2 to the prior ensemble. The coefficients U 9 and V 9 are determined by252

regressing the pseudo-proxies against the target field. Note that pseudo-proxy noise and sampling253

errors will affect the statistics obtained from these regressions, so U 9 and V 9 are estimates of the254

coefficients 0 9 and 1 9 used to generate the pseudo-proxies. This mimics how noise and sampling255

errors can introduce errors into forward models calibrated on real NTREND data. Once we obtain256
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pseudo-proxy estimates, we then determine an optimal localization radius (Appendix A2, Table257

S1).258

A key feature of pseudo-proxy experiments is that the target reconstruction is known. Conse-259

quently, we can assess skill directly against the correct answer. Here, we examine pseudo-proxy260

reconstruction skill using mean Northern Hemisphere extratropical (30°N–90°N) MJJA tempera-261

ture time series, and spatial grid point time series over the full reconstruction period (850 CE to262

1988 CE).263

We compare the most realistic (biased-model, noisy-proxy, temporal-attrition) pseudo-proxy DA264

reconstructions to analogous reconstructions generated using point-by-point regression (PPR). PPR265

is a “region of interest” CFR technique that iteratively calculates a nested multivariate principal266

components regression model between predictor network and each point in the target field (Cook267

et al. 1999). The method was motivated by the premise that proxies near a reconstructed grid268

point are more likely to reflect climate at that site. Consequently, PPR uses a strict search radius269

to select proxy predictor series for each grid point reconstruction. The method was first used for270

drought reconstructions (Cook et al. 1999, 2010a,b) and later adapted for continental temperature271

anomalies (Cook et al. 2013). Anchukaitis et al. (2017) used the method to reconstruct hemispheric272

temperature anomalies, and we follow their implementation in this study.273

In brief, given a target of gridded climate observation, the method first identifies proxy sites274

within 1000 km of each grid point centroid. If no proxy records are found within 1000 km, the275

search radius is expanded in 500 km increments to a maximum of 2000 km until proxy sites are276

found within the radius. All proxy sites found within the search radius are then used as predictor277

sites for that grid point. If no predictors are found within 2000 km, then no reconstruction is278

performed for the grid. These radii are based on decorrelation decay lengths in the observational279

temperature field from Cowtan andWay (2014). A multivariate regression model is then calibrated280
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against the MJJA temperature values of the target field (Cowtan and Way 2014) for each grid point281

over the period 1945 to 1988 CE, and the reconstructions are validated using withheld temperature282

data for the period 1901 to 1944 CE. As the number of records declines back through time, the283

regression model is recalibrated and validated for each change in network size and scaled to match284

the mean and variance of the predictand during their overlapping time period (Meko 1997; Cook285

et al. 1999). For a given grid point, temperature anomalies are obtained for all years in which at286

least one predictor record remains within the initial search radius. Following Anchukaitis et al.287

(2017), we then screen the final reconstructed field in each time step to only include grid cells288

where the reduction of error (RE; Cook et al. (1994)) statistic is greater than zero. We use this289

screened field here as the final PPR MJJA temperature reconstruction.290

d. Real NTREND Reconstruction291

We next assimilate the real NTREND network. To examine the effects of prior selection, we292

produce 10 real DA reconstructions each using a different climatemodel to generate the prior (Table293

1). Since each prior is itself an ensemble, these 10 reconstructions effectively create an ensemble294

of ensembles. To minimize ambiguity, we will henceforth refer to the set of 10 reconstructions295

as the “multi-model ensemble”, and the DA ensemble for each individual reconstruction as a296

“prior/posterior ensemble”.297

Forward model estimates of the NTREND records in each reconstruction are determined by298

applying equation 2 to CRU-TS 4.01. We assess the skill of each reconstruction using time-series299

of mean Northern Hemisphere extratropical (30°N–90°N) MJJA temperature, instrumental spatial300

field grid points, and independent proxy records. The skill of the extratropical time series is301

determined using a Monte Carlo calibration-validation procedure (Appendix A2). Spatial skill is302

computed against the Berkeley Earth surface temperature field (BEST; Rohde et al. 2013) over303
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the period 1901 - 1988 CE. The BEST instrumental record is not used in the forward model and304

localization calibrations, which instead leverage the CRU product. However, we caution that BEST305

is not a truly independent dataset, as both BEST and CRU are partly based on the same instrumental306

climate data. As an additional validation we assess the ability of DA to reconstruct withheld proxy307

time series. We perform a series of leave-one-out assimilations for each model by iteratively308

removing a single proxy time-series from the NTREND network and assimilating the remaining309

53 records. In these experiments, we construct the prior from the average temperatures over the310

removed site’s optimal growing season at the grid point closest to the removed site. This allows us311

to apply Equation 2 to the posterior to estimate the removed record from the reconstruction. We312

then compare this estimate to the real withheld NTREND record.313

We next calculate a mean reconstruction for the multi-model ensemble. To do so, we first314

calculate ensemble-mean values from the posterior of each of the reconstructions. The mean of315

the multi-model ensemble is then calculated as the mean of these 10 posterior ensemble means.316

We quantify uncertainty of the multi-model mean using first the mean of the 10 posterior ensemble317

widths:318

f2
multi-model mean =

1
10
Σ10
8=1f

2
posterior ensemble i (5)

and then the 2f width of the multi-model ensemble for the series. We first determine the multi-319

model ensemble-mean for the extratropical MJJA time series. We next compute a mean spatial320

reconstruction for the multi-model ensemble by linearly interpolating each reconstruction to the321

lowest model resolution and averaging at each grid point.322

We compare the multi-model mean spatial product to several recent temperature CFRs sum-323

marized in Table 3. In brief, Guillet et al. (2017) focused on reconstructing high-frequency324

temperature anomalies associated with known volcanic eruptions using a network of a similar size325

and composition to the NTREND network in a linear regression framework and their work provides326
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a comparison point with Anchukaitis et al. (2017). The LMR 2.1 reconstruction applied an offline327

EnSRF DA to the PAGES2k network and allows us to compare DA reconstructions using different328

proxy networks (Tardif et al. 2019). From Zhu et al. (2020), we examine the reconstruction of329

mean June through August (JJA) temperatures using PAGES2k trees. The Neukom et al. (2019)330

DA offers another comparison point, using a proxy network of intermediate size derived from a331

screened version of PAGES2k. Neukom et al. (2019) performed an ensemble of reconstructions332

using different methods and recommend using the ensemble mean reconstruction for climate anal-333

ysis; however, we only focus on the DA product to emphasize the differences in reconstructions334

that arise when using similar methodologies.335

Weexamine the temperature response to external forcing for both the reconstruction ensemble and336

temperature CFRs. We compare temperature anomalies between the Medieval Climate Anomaly337

(MCA; 950 - 1250 CE) and the Little Ice Age (LIA; 1450 - 1850 CE) (Masson-Delmotte et al. 2013;338

Anchukaitis et al. 2017), and separately use superposed epoch analysis (Haurwitz andBrier 1981) to339

determine composite mean responses to major tropical volcanic eruptions. For the volcanic events,340

we follow Sigl et al. (2015) and identify years containing a global eruption forcing magnitude equal341

to or larger than the 1884 Krakatoa eruption (= = 20), which yields the following event years: 916,342

1108, 1171, 1191, 1230, 1258, 1276, 1286, 1345, 1453, 1458, 1595, 1601, 1641, 1695, 1809, 1815,343

1832, 1836, and 1884 CE (Sigl et al. 2015; Anchukaitis et al. 2017). We calculate temperature344

anomalies relative to the mean of the five years preceding each of these event years.345
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3. Results346

a. Pseudo-proxy experiments347

The pseudo-proxy reconstructions are most skillful in the extratropical Northern Hemisphere348

(Figure 2). In this region, ocean basin correlations are lower relative to land with notable exceptions349

over the eastern and north-western edges of the Pacific. Correlations generally decline with350

increasing distance from the extratropical NorthernHemisphere and the tree-ring network, although351

significant spatial heterogeneity exists throughout the tropics. The climate model covariance biases352

cause the largest reductions in correlation coefficients and sharply reduce skill outside of the353

extratropical Northern Hemisphere. Network attrition and proxy noise have comparatively minor354

effects over the full period. Results for other skill metrics show similar behavior (Figures S1, S2,355

and S3).356

We next compare the most realistic (biased-model, noisy-proxy, temporal-attrition) DA experi-357

ments to PPR reconstructions. Given the strict reconstruction radius in PPR, and the spatial pattern358

of DA skill, we consider only the extratropical Northern Hemisphere in our discussion. The skill359

metrics for the mean extratropical time series are similar for the two methods (Table S2; Figures360

S4, S5). The regional spatial correlations of the DA and PPR reconstructions for the CESM and361

MPI targets (Figures 3 and S6, respectively) are also comparable: each exhibits correlations with362

the target field greater than 0.7 in Scandinavia, western Siberia, and western Canada, and these363

regions correspond to the best coverage by the proxy network. Similarly, both methods exhibit low364

correlations in southeastern Canada, eastern Siberia, and in the region of the Black and Caspian365

Seas. The DA does however exhibit a broader spatial region of high correlation than PPR, and DA366

correlations are higher than PPR values at nearly all grid points. Similarly, DA reconstructions367

exhibit lower RMSE values at most grid points. Standard deviation ratios indicate that the DA368
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reconstructions underestimate temporal temperature variability, but this effect is less severe near369

the proxy sites. In contrast with DA, PPR time series f ratios neither strictly overestimate nor370

strictly underestimate temporal variability, instead demonstrating a mixed response over the hemi-371

sphere. In general, our DA reconstructions underestimate variability more strongly than the PPR372

analogues. Mean biases are comparable, with both methods exhibiting similar spatial patterns and373

bias magnitudes, although it is interesting to note that the spatial patterns of bias change markedly374

depending on the target field.375

b. Real NTREND Reconstruction376

For the real NTREND data assimilation, validation statistics for the mean extratropical MJJA377

time series are similar across all priors (Table 2) with mean correlations of 0.70, RMSE of 0.19 °C,378

and absolute mean bias of 0.06 °C. Temporal variability is close to the target with mean standard379

deviation ratios of 1.11. Time series obtained using different model priors (Figure S7) have a380

mean range of 0.22 °C over the period of full coverage (1750-2988 CE; = = 54). However, the381

reconstructed time series diverge as the network becomes sparse, with a range of 0.76 °C by the382

first year of the reconstruction (750 CE; = = 4). The model ensemble-mean time series exhibits383

similar skill values as the reconstructions for the individual models (Table 2) with a correlation of384

0.72, RMSE of 0.18 °C, temporal f ratio of 1.06, and a mean bias of 0.05 °C.385

We compare the extratropical MJJA time series for the multi-model mean to analogous time386

series extracted from the Berkeley Earth (BEST) instrumental record and the Anchukaitis et al.387

(2017) NTREND PPR reconstruction (Figure 4). The DA series shows similar behavior to BEST388

from 1880-1988 CE, although both the DA and PPR reconstructions of Anchukaitis et al. (2017)389

diverge from this dataset over the earliest period from 1850-1879 CE. This may reflect a warm390

bias (Parker 1994; Frank et al. 2007; Böhm et al. 2010) and limited spatial coverage (Rohde et al.391
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2013; Anchukaitis et al. 2017) in the early instrumental temperature record. The DA and PPR392

time series show similar behavior over most of the record, with a correlation coefficient of 0.88.393

Temporal variability is generally higher in the PPR series than in the DA. Prior to about 1100 CE,394

the series’ running standard deviations show larger differences, which is caused by the decrease in395

DA reconstructed variability.396

Most spatial validation statistics show similar patterns to those observed in the pseudo-proxy397

experiments (Figure 5). Correlation coefficients and standard deviation ratios indicate the highest398

skill over Scandinavia, central and northern Asia, and northwestern North America, the regions399

of densest network coverage. Correlation coefficients approach 0.8 and standard deviation ratios400

approach 1 near the proxy sites themselves. Over land, mean biases are typically below 0.5401

°C, with the largest largest over central Canada and eastern Siberia and smallest over the Arctic402

Archipelago, Alaska, and west-central Asia. Away from the proxy sites, temporal variability is403

underestimated, particularly over the oceans. However, most land grid points exhibit f ratios near404

1 with a slight overestimate in central Asia and northern Japan. Much of the temporal variability in405

the extratropical mean time series is driven by land grid points, and this tendency helps reconcile406

Figure 5 with extratropical mean time series f ratios near 1. RMSE values are typically less than407

0.6 °C, but rise to values near 1 °C over the North Pacific, central Canada, and north of the Caspian408

Sea.409

Independent proxy validation statistics (Table 4) show median correlation coefficients near 0.5,410

and RMSE values near 1°C. Temporal variability is underestimated relative to the target series411

with f ratios typically between 0.3 and 0.4. Mean biases are variable and depend on the prior412

model used. Not surprisingly given the sparsity of the NTREND network, removing even a single413

proxy record from the assimilation can substantially reduce the ability to reconstruct temperature414

anomalies at nearby grid cells. Consequently, the leave-one-out assimilation process we use415
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to assess independent proxy skill almost certainly underestimates overall field validation skill.416

Nevertheless, these values are comparable to previous efforts with median correlation coefficients417

somewhat higher than those in Hakim et al. (2016) and Tardif et al. (2019).418

c. Epochal Temperature Changes419

We next examine the temperature change between the Medieval Climate Anomaly (MCA; 950420

- 1250 CE) and the Little Ice Age (LIA; 1450 - 1850 CE) (Masson-Delmotte et al. 2013; An-421

chukaitis et al. 2017). The reconstructions nearly all indicate warmer temperatures during the422

MCA throughout the high latitudes with maximum anomalies typically over northeastern Canada423

(Figure 6). However, anomaly magnitudes vary across reconstructions with values ranging from424

over 1.6 °C (for CCSM4, MIROC, MPI priors) to less than 0.8 °C (IPSL and FGOALS priors).425

The spatial pattern also varies by model prior. Many reconstructions show stronger anomalies in426

Fennoscandia, northeastern Asia, and northwestern North America, but these patterns do not occur427

in all models.428

Comparing the MCA-LIA difference for our multi-model mean reconstruction with other CFRs429

(Figure 7), we find our spatial anomaly patterns most similar to Anchukaitis et al. (2017). Anomaly430

magnitudes are also comparable, except over northeastern Canada. In the Anchukaitis et al. (2017)431

reconstruction, this region exhibits anomalously high medieval temperatures (> 3 °C), which432

they attribute to a detrending artifact in a tree-ring record from Quebec. By contrast, our DA433

reconstruction produces a maximum medieval anomaly of 1 °C for this region, in better agreement434

with other proxy reconstructions (e.g. 0-1.5◦C; Sundqvist et al. 2014). Comparing the results435

of this study to Neukom et al. (2019), we observe that both NTREND DA and Neukom et al.436

(2019) exhibit a positive anomaly over most of the high-latitude Northern Hemisphere; however,437

the anomalies in the Neukom et al. (2019) product have much larger magnitudes and the maxima438

20



of the North America features occur in different locations. Zhu et al. (2020) also indicate positive439

anomalies in the Northern Hermisphere, but these are lower magnitude than the other products440

and more spatially localized. By contrast, the LMR2.1 product (Tardif et al. 2019) exhibits an441

anomaly pattern notably different from the other reconstructions, with a strong positive anomaly in442

the Arctic Ocean north of Siberia. Since the Guillet et al. (2017) reconstruction reflects high-pass443

filtered reconstructed temperatures, we do not consider it in this comparison.444

d. Volcanic Response445

We next examine the composite mean response to major tropical volcanic eruptions. Our 10446

reconstructions show broadly similar responses to large tropical volcanic eruptions (Figure 8), with447

the spatial pattern characterized by a strong cold anomaly in northern Canada and a second region448

of cooling extending from Fennoscandia east of the Caspian Sea toward central Asia. However,449

the extent and magnitude of these vary between the different reconstructions. Several regions also450

exhibit markedly different spatial patterns across the 10 reconstructions. In particular, the response451

in central North America and eastern Asia appears highly sensitive to the choice of model prior.452

Comparing the volcanic pattern for our multi-model mean reconstruction with the other existing453

CFRs (Figure 9) shows large differences in spatial patterns, magnitudes, and even sign of the454

anomalies. In general, most CFRs show some combination of cooling anomalies in northern455

North America and northern Asia, with a slight neutral or warming anomaly in the North Pacific.456

However, these features are not present in all the CFRs and vary in maximummagnitude. The mean457

of our model ensemble, Anchukaitis et al. (2017), and Guillet et al. (2017) products all exhibit458

the northern Canada and western Asia cooling features and the spatial extent is similar for the two459

NTREND products. In contrast, the Guillet et al. (2017) Canadian feature is centered farther east,460

and its northern Asian feature is stronger (near 1.5 °C) with a maximum more strongly localized to461
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northern Siberia. These two features are also present in Zhu et al. (2020), but maximum cooling is462

smaller in magnitude. The LMR2.1 does not show distinct north Asian terrestrial cooling, although463

an anomaly of 0.6 C is reconstructed in the Arctic Ocean north of Siberia. This reconstruction464

also demonstrates a North American response pattern similar to Zhu et al. (2020) with a reduced465

magnitude of cooling in northern Canada. TheNeukom et al. (2019) product again shows the largest466

anomalies, with values greater than 1.5 °C over much of northern Siberia and Fennoscandia. This467

feature does not extend as far south as in the NTREND DA ensemble-mean but is zonally wider.468

Neukom et al. (2019) also show a single strong North American feature with cooling magnitudes469

near 1.2 °C. Interestingly, Neukom et al. (2019) exhibits a North Pacific warming response that470

strengthens one year after the volcanic event, a feature also evident in the Anchukaitis et al. (2017)471

reconstruction that may reflect changes in atmospheric circulation following an eruption (e.g.472

Robock 2000; Stenchikov et al. 2006; Christiansen 2008; Schneider et al. 2009)473

4. Discussion474

The pseudo-proxy experiments indicate that regions of high reconstruction skill for the assim-475

ilated NTREND network is limited to the extratropical Northern Hemisphere when using biased476

climate model priors. This finding supports work by Franke et al. (2020) and suggests that analyses477

of temperatures using the NTREND network should be limited to this region, consistent with478

Wilson et al. (2016) and Anchukaitis et al. (2017). In comparison with Anchukaitis et al. (2017)479

(NTREND PPR), our DA method exhibits similar skill at reconstructing mean Northern Hemi-480

sphere extratropical MJJA time series using the NTREND network, but also provides continuous481

field estimates of past temperature and improves the spatial correlation and RMSE.We suggest this482

improvement arises at least in part from the contrast between PPR’s strict-limited search radius and483

the DA’s longer localization radii. Many NTREND sites exhibit statistically significant covariance484
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with the MJJA temperature field outside of PPR’s 2000 km maximum search radius (see Figure485

5 of Anchukaitis et al. (2017)), and these distal covariances are not used to improve the PPR486

reconstruction. By contrast, the DA uses no localization in these pseudo-proxy experiments (Table487

S1) and if the model prior provides a good estimate of a proxy site’s field covariance, the proxy488

record can inform the reconstruction of distal grid points. Ultimately, these results suggest that489

our DA method improves on the spatial component of Anchukaitis et al. (2017) for reconstructing490

a Northern Hemisphere temperature history of the Common Era from the NTREND network. We491

note that, as is the case for most field reconstruction methods (Ammann and Wahl 2007; Tingley492

et al. 2012), our offline DA method implicitly assumes the broad-scale covariance patterns can be493

considered stationary through time. Transient offline (e.g. Bhend et al. 2012; Valler et al. 2019;494

Franke et al. 2020) or online assimilation techniques (e.g. Perkins and Hakim 2017) may offer495

additional improvements.496

Our results also highlight the sensitivity of the DA reconstructions to the model prior. In the497

pseudo-proxy experiments, the introduction of model covariance bias reduces widespread global498

skill to the high latitude Northern Hemisphere and the regions nearest the proxy sites. Network499

attrition and proxy noise cause comparatively small effects over the full period, a finding in500

agreement with Dee et al. (2016). Given this potential for perfect-model experiments to exaggerate501

the magnitude and spatial extent of DA skill, we encourage future DA proof-of-concept and502

sensitivity studies to consider perfect-model experiments in conjunction with biased-model cases.503

In contrast with these results, previous assimilation efforts have found little sensitivity to the504

choice of prior (Hakim et al. 2016). The small size of the NTREND network may exacerbate this505

sensitivity, but even assimilations using larger networks may be sensitive to the choice of priors in506

those periods with reduced proxy coverage.507
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Reconstructions are most sensitive to the prior when the proxy network becomes small. For508

example, despite using the same proxy network and reconstruction technique, mean extratropical509

MJJA temperature time series diverge by more than 0.5 °C in the earliest parts of the reconstruction510

when the number of sites in our network is limited (Figure S7). The use of different priors also511

produces noticeable differences in spatial MCA-LIA temperature anomaly patterns (Figure 6),512

which we interpret as arising from the reduced size of the proxy network during the MCA. In513

contrast, the volcanic response maps present a more consistent spatial pattern (Figure 8), which we514

attribute to the larger size of the proxy network during most of the volcanic events. The magnitude515

of the forced response may also contribute to similarity across the priors; however, the volcanic516

response maps still exhibit different spatial patterns in regions like east Asia where the proxy517

network is sparse.518

The consistency with which the DA underestimates the temporal variability of the target field,519

particularly over the oceans and far from the proxy sites, requires consideration. In this study,520

we focus on time series derived from the posterior ensemble-mean at each time step. However,521

this focus on the ensemble-mean neglects the width of the full posterior ensemble. Like many522

offline EnSRF studies (e.g. Hakim et al. 2016; Dee et al. 2016; Steiger et al. 2018), our method523

uses a stationary prior in each time step; thus, the prior ensemble-mean is constant through time.524

As the proxy network becomes sparse, update magnitudes decrease, and the posterior ensemble525

more closely resembles the prior. When this occurs, the reconstructed ensemble-mean time series526

will closely resemble the mean of the prior ensemble, and the time series’ temporal variability527

will approach zero. Similarly, regions far from the proxy network will exhibit smaller update528

magnitudes, so grid point time series far from the proxy sites have lower f ratios. However,529

this reduction in temporal variability is balanced by increased posterior ensemble width, which530

will remain near the spread of the prior ensemble. Incorporating the width of the posterior with531
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ensemble-mean time series can produce a range that encompasses target time-series variability,532

but it is not always clear how to use these ranges in spatiotemporal analyses. Hence, we emphasize533

that users of DA products with constant priors should carefully consider how changes in the proxy534

network affect the temporal variability of posterior ensemble-mean time series and make use of535

the posterior range when possible. We also note that allowing the model prior to vary in each time536

step may help mitigate these effects, which again may argue for expanded future use of transient537

offline priors (e.g. Bhend et al. 2012; Valler et al. 2019; Franke et al. 2020) or online assimilation538

techniques (e.g. Perkins and Hakim 2017) where possible.539

The prior sensitivity and temporal variability effects underscore the importance of understanding540

how the proxy network affects the quality of the reconstruction (Esper et al. 2005; Wang et al.541

2014). A key feature of DA techniques is the ability to estimate reconstruction uncertainty in each542

time step from the width of the posterior ensemble. Figure 10 provides an example of such an543

analysis for the multi-model mean by examining the temperature response following the 1257 CE544

(Lavigne et al. 2013) and 1600 CE (De Silva and Zielinski 1998) volcanic eruptions in conjunction545

with the full posterior width. The uncertainty maps for both events show maxima in central North546

American and northeastern Asia and suggest that associated temperature anomalies should be547

interpreted more cautiously. Notably, these regions correspond to areas that are also sensitive to548

the prior in Figure 8. By contrast, central and east-central Asia, Fennoscandia, central Europe, and549

southwestern Canada exhibit a narrow posterior for both events, so volcanic anomalies in these550

regions are better constrained. Interestingly, the temperature response in 1601 CE is relatively551

small over much of central Europe and reconstruction uncertainty is relatively low, which suggests552

this feature may be a robust feature of the post-eruption climate anomaly. In addition to supporting553

analysis of reconstructed climate features, these uncertainty estimates can help identify regions554

that would benefit from increased network density (Comboul et al. 2015). In particular, we observe555

25



that northern North America and eastern Siberia would benefit from the development of new556

millennial-length temperature-sensitive tree-ring records.557

The CFR comparison reveals the highly variable nature of spatial patterns and magnitudes of558

reconstructed temperature anomalies that result from different selections of proxy networks, target559

fields, and reconstruction methodologies. For example, despite using the same proxy network560

and target field, the DA multi-model mean and PPR result from Anchukaitis et al. (2017) have561

MCA-LIA anomalies that differ by over 2 °C in northeastern Canada (Figure 7), which relates to the562

outsized effect of theQuebec tree-ringwidth record (Gennaretti et al. 2014) on theAnchukaitis et al.563

(2017) reconstruction. We note that the localization radii used in our reconstructions (≥ 9500 km)564

allow proxies to influence grid cells farther away than the maximum 2000 km search radius used by565

Anchukaitis et al. (2017), so distant proxies are able to counter the effects of the Quebec record in566

the DA. Even within the same DA framework, our results indicate that reconstructed temperature567

responses are highly variable, particularly for MCA-LIA anomalies. These differences result from568

targeting different fields and leveraging different proxy networks. Aside from spatial and temporal569

coverage, we note that using proxy records that are not strictly temperature sensitive can introduce570

structural biases relative to other temperature CFRs. For example, the LMR2.1 reconstruction571

includes proxies that are sensitive to more than just temperature, which could possibly reduce572

updatemagnitudes and help explain the smallermagnitudes of the volcanic responses. Similarly, the573

Neukom et al. (2019) DA product and LMR2.1 incorporate proxies like corals and lake-sediments574

that are not present in the tree-ring based CFRs, and it is possible that these records influence575

the large magnitudes of the Neukom et al. (2019) DA climate responses or the atypical LMR2.1576

MCA-LIA spatial pattern. However, we emphasize that these hypotheses are strictly speculative577

at this moment and that the differences in reconstructed climate response by themselves do not578

indicate whether one proxy network or reconstruction is superior to another in representing past579
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climate variability. Instead, our CFR comparison highlights that, despite the recent decades of580

progress in understanding both methods and paleoclimate data (Hughes and Ammann 2009; Frank581

et al. 2010; Smerdon et al. 2011; Tingley et al. 2012; Wang et al. 2014; Smerdon and Pollack582

2016; Christiansen and Ljungqvist 2017; Esper et al. 2018), differences in reconstructions of past583

temperature still arise when using different proxy networks, different target seasons, and making584

different reconstruction choices, and these differences fundamentally influence our interpretation585

of the temperature response to radiative forcing (c.f. Wang et al. 2015). This observation calls for586

a revival of paleo-reconstruction intercomparison projects (e.g. Ammann 2008; Graham and Wahl587

2011; Anchukaitis andMcKay 2015) in order to examine the behavior, strengths, andweaknesses of588

different proxy networks and reconstruction choices in a systematic and community-driven manner.589

Furthermore, such an effort would help identify regions with consistently large reconstruction590

uncertainties and indicate where to prioritize the development of new or the extension of existing591

tree-ring records.592

5. Conclusions593

In this study, we assimilate a small but highly temperature-sensitive tree-ring network based on594

expert assessment to reconstruct summer (MJJA) temperature anomalies from 750-1988 CE. Our595

method is skillful in the extratropical Northern Hemisphere and improves on a previous spatial596

reconstruction using the same network, thereby providing a new dataset with which to examine597

temperature dynamics and climate response to radiative forcing over the last millennium. In a set598

of pseudo-proxy experiments, we find that our method is sensitive to climate model biases, so we599

perform an ensemble of reconstructions using 10 different climate model priors. Reconstructed600

temperature anomalies are sensitive to the selection of the model prior when the proxy network601

becomes sparse, but the reconstructed spatial patterns and time series converge to consistent values602
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as the number of sites in the NTRENDproxy network increases. As one consequence of using static603

offline priors, our method underestimates temporal variability particularly when the proxy network604

becomes small, which argues for the future use of transient offline priors, online assimilation605

techniques in DA paleoclimate reconstructions, and expanded proxy development. There is also606

a need for continued development of proxy system forward models, particularly for the important607

MXD metric. The influence of the proxy network coverage on the reconstructions emphasizes the608

importance of analyzing reconstructed temperature anomalies in conjunctionwith estimates of their609

uncertainty. These uncertainty estimates emerge naturally for both spatial fields and time series610

from the DA posterior ensembles and are an enhancement over previous reconstructions using the611

NTREND dataset. In addition to gauging reconstruction validity, the uncertainty estimates identify612

regions that would benefit from additional proxy records and support the development of more613

millennial-length temperature-sensitive tree-ring records in treeline North America and eastern614

Siberia especially. Comparison of our reconstruction with other temperature CFRs indicates that615

reconstructed temperature anomalies have highly variable spatial patterns and magnitudes, even616

within similar reconstruction frameworks and proxy network. These different climate responses617

call for a renewed paleo-reconstruction intercomparison framework in which to systematically618

examine the effects of network selection across reconstruction techniques and prioritize regions619

for future record development.620
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APPENDIX639

Data Assimilation Methods640

A1. The Ensemble Kalman Filter641

Our data assimilation method uses an ensemble Kalman filter approach (Evensen 1994; Steiger642

et al. 2014; Hakim et al. 2016) to solve the update equation:643

Xa = Xp +K(Y−Ye) (A1)

in each reconstructed annual time step. Here Xp is an initial ensemble of plausible climate states,644

an n xmmatrix where n is the number of state variables andm is the number of ensemble members.645

Xa is the updated ensemble (the analysis), also an n x m matrix. Y is a d x m matrix of observed646

proxy values, where d is the number of available proxy records in a given time step. Ye is a d x m647

matrix consisting of model estimates of the proxy values. Each row ye 9
is determined by applying648

the forward model for the jth proxy site to the ensemble via Equation 2. K is the Kalman Gain, an649

n by d matrix that weights the covariance of proxy sites with the target field by the uncertainties in650

the proxy observations and estimates.651

We use an EnKF variant known as the ensemble square root Kalman filter (EnSRF; Andrews652

1968), which removes the need for perturbed observations (Whitaker and Hamill 2002). Conse-653

quently, Y is a matrix with constant rows. In the EnSRF formulation, ensemble deviations are654

updated separately from the mean, as per:655

x̄a = x̄p +K(ȳ− ȳe) (A2)
656

X′a = X′p− K̃Y′e (A3)
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where an overbar (x̄) denotes an ensemble average, and a tick (X′) indicates deviations from an657

ensemble mean. Here, the ensemble mean is updated via the Kalman gain (K):658

K = cov(Xp,Ye) × [cov(Ye,Ye) +R]−1 (A4)

and the deviations are updated via an adjusted gain (K̃):659

K̃ = cov(Xp,Ye) × [(
√

cov(Ye,Ye) +R)−1]T [
√

cov(Ye,Ye) +R+
√

R]−1 (A5)

Here, R denotes the observation error-covariance matrix (d x d). We do not consider correlated660

measurement errors in this study, so R is a diagonal matrix whose elements are the observation661

uncertainties determined from the variances of the residuals for the forward model regressions.662

A2. Covariance Localization663

We implement a covariance localization scheme, modifying the Kalman Gain equations to:664

K=Wloc ◦ cov(Xp,Ye) × [Yloc ◦ cov(Ye,Ye) +R]−1 (A6)

and665

K̃ =Wloc ◦ cov(Xp,Ye) × [(
√

Yloc ◦ cov(Ye,Ye) +R)−1]T [
√

Yloc ◦ cov(Ye,Ye) +R+
√

R]−1.

(A7)

Here, Wloc (= x 3) and Yloc (3 x 3) are matrices of covariance localization weights applied to666

the covariance of proxy sites with model grid cells (Wloc) and proxy sites with one another (Yloc).667

We implement localization weights as a fifth order Gaspari-Cohn polynomial (Gaspari and Cohn668
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1999) applied to the distance between proxy sites and model grid cells (Wloc) or proxy sites with669

one another (Yloc). Weights are applied to covariance matrices via element-wise multiplication.670

The localization radius is an important free parameter that must be assessed independently for671

different model priors, reconstruction targets, and proxy networks. Here, we select localization672

radii using a two step process. For a given model prior and target field, we first assimilate the proxy673

network from 1901-1988 CE using each localization radius from 250 km to 50,000 km in steps674

of 250 km and a run with no localization. We then determine the f ratio of each reconstructed675

extratropical MJJA time series in a calibration interval. We find the f ratio closest to 1 and record676

the associated localization radius as “optimal”. We then calculate skill metrics for the extratropical677

MJJA time series over a validation interval using the reconstruction with the optimal radius.678

To limit the sensitivity of this method to the calibration period (Christiansen et al. 2009), we679

perform this optimization using each set of 44 contiguous years from 1901-1988 CE once as a680

calibration interval and once as a validation interval. The final localization radius is the median of681

the 88 “optimal” radii, and the median validation skill metrics are reported.682

a. Selection Criterion683

In the development of this method, we tested an RMSE selection criterion in addition to f ratios.684

We find that correlation coefficients, RMSE values, and mean biases of the reconstructed mean685

extratropical MJJA time series are all insensitive to the choice of selection criteria (Table 2, Table686

A1), but that f ratios are more sensitive. Specifically, mean f ratios are near 0.8 for the RMSE687

selection criterion, but rise to 1.11 for the f ratio scheme. Since the f ratio localization selection688

criteria brings thef ratio skill metric closer to 1 without appreciably altering the other skill metrics,689

and because of the tendency for our DA method to underestimate temporal variability, we use a f690

ratio selection criterion.691
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Table 1. Summary of climate models used to construct data assimilation prior ensembles. Climate models

are listed along with the identifying acronym used in this study. The years of available output are provided with

the experiment used to generate them. The size of the model prior generated from these years is also provided.

Taylor et al. (2012) provide more details on the PMIP3 and CMIP5 experiments, and Otto-Bliesner et al. (2016)

describe the LME.

996

997

998

999

1000

Model Acronym Years: Experiment Sample size (<)

BCC-CSM1-1 BCC 850-2000: past1000 1151

CCSM4 CCSM4 850-1850: past1000
1851-2005: historical 1156

CESM1.1-CAM5 CESM 850-2005: LME full-forcing 1156

CSIRO-Mk3L-1-2 CSIRO 851-1850: past1000
1851-2000: historical 1150

FGOALS-gl FGOALS 1000-1999: past1000 1000

HadCM3 HadCM3 850-1850: past1000
1859-2000: historical 1147

IPSL-CM5A-LR IPSL 850-1850: past1000
1851-2005: historical 1156

MIROC-ESM MIROC 850-1849: past1000
1850-2005: historical 1156

MPI-ESM-P MPI 850-1849: past1000
1850-2005: historical 1156

MRI-CGCM3 MRI 850-1850: past1000
1850-2005: historical 1156
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Table 2. Calibrated localization radii. Localization radii for individual model priors are selected using the

radius search and calibration-validation procedure detailed in Appendix A1. Skill metrics are the median values

obtained for the mean extratropical MJJA time series relative to BEST for the set of validation periods.

1001

1002

1003

Model Localization Radius (km) Correlation RMSE (°C) f Ratio Mean Bias (°C)

BCC ∞ 0.69 0.18 1.03 0.05

CCSM4 16500 0.72 0.19 1.18 0.07

CESM ∞ 0.72 0.18 1.08 0.06

CSIRO ∞ 0.70 0.19 1.18 0.05

F-GOALS ∞ 0.70 0.18 1.02 0.07

HadCM3 ∞ 0.69 0.19 1.18 0.05

IPSL 12750 0.70 0.19 1.19 0.06

MIROC 26375 0.71 0.19 1.18 0.06

MPI 27625 0.69 0.20 1.18 0.06

MRI ∞ 0.71 0.17 1.01 0.05
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Table 3. Temperature field reconstructions used to compare spatial patterns of climate response to radiative

forcings in this study. We provide a reference for each CFR along with the name used in this study. We also note

the maximum size of the proxy network used in each study along with the target temperature fields.

1004

1005

1006

Name Reference Network Size Reconstruction Target

NTREND - DA This study 54 MJJA

NTREND - PPR Anchukaitis et al. (2017) 54 MJJA

Guillet 2017 Guillet et al. (2017) 28 Highpass JJA

Zhu 2020 Zhu et al. (2020) 395 JJA

LMR 2.1 Tardif et al. (2019) 544 Annual (Jan. - Dec.)

Neukom (DA) Neukom et al. (2019) 210 Annual (April - March)
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Table 4. Withheld proxy verification statistics for individual models. Reported skill metrics are the median

for all individual proxy comparisons over the 54 leave-one-out assimilations.

1007

1008

Model Correlation RMSE f Ratio Mean Bias ◦C

BCC 0.53 0.98 0.42 0.12

CCSM4 0.52 0.98 0.42 0.06

CESM 0.50 1.03 0.35 0.27

CSIRO 0.54 1.01 0.31 0.13

F-GOALS 0.47 1.04 0.34 0.06

HadCM3 0.49 1.03 0.39 0.25

IPSL 0.53 1.00 0.38 0.08

MIROC 0.53 1.01 0.37 0.25

MPI 0.53 0.99 0.39 0.11

MRI 0.55 0.98 0.32 0.16
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Table A1. As in Table 2, but using the RMSE optimization scheme.

Model Localization Radius (km) Correlation RMSE (°C) f Ratio Mean Bias (°C)

BCC 18875 0.71 0.17 0.78 0.06

CCSM4 7375 0.71 0.18 0.81 0.07

CESM 15750 0.71 0.18 0.84 0.07

CSIRO 15750 0.70 0.18 0.80 0.06

F-GOALS 19000 0.72 0.18 0.77 0.08

HadCM3 13375 0.70 0.18 0.82 0.06

IPSL 6750 0.70 0.18 0.80 0.07

MIROC 11125 0.71 0.18 0.84 0.07

MPI 10250 0.70 0.18 0.80 0.07

MRI 20250 0.71 0.17 0.78 0.06
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Table S1. Pseudo-proxy localization radii and split-sample validation metrics. As in Table 2, but using

climate model output as the target field.

26

27

Target Prior Localization Radius (km) Correlation RMSE (°C) f Ratio Mean Bias (°C)

CESM CESM ∞ 0.73 0.18 0.76 0.02

CESM MPI ∞ 0.72 0.19 0.91 0.02

MPI CESM ∞ 0.74 0.21 0.62 0.09

MPI MPI ∞ 0.75 0.20 0.75 0.07
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Table S2. Skill metrics for pseudo-proxy reconstructions of mean extratropical May-August time series. DA

reconstructions use the realistic biased-model, noisy-proxy, time-attrition experimental design. PPR time series

and target time series are calculated using only the grid cells for which RE>0 in each reconstructed time step.

28

29

30

Target Field Reconstruction Method Correlation RMSE (°C) f Ratio Mean Bias (°C)

CESM DA, MPI Prior 0.67 0.20 0.84 -0.03

PPR 0.68 0.25 0.96 0.03

MPI DA, CESM Prior 0.74 0.41 0.66 0.35

PPR 0.73 0.46 0.84 0.37
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Fig. S7. Extratropical MJJA time series for the individual DA reconstructions. Each time series shows the

results for a particular model prior. A 31 year moving average has been applied to each time series.
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